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ABSTRACT

We study the linear autonomous, neutral system of functional differential

equations n

d( ( x(t) + f(t)) - V*x(t) + g(t) (t 0)

x(t) = 0(t) (t 4 0)

'in a fading memory space. Here P and V are matrix-valued measures

supported on 10,0), finite wit Ct to a weight function, and f, g and

are cn-valued, continuous or locally ntegrable functions, bounded with
resvet to f *ap-C I 4A^.K4.respect to a f~dg memory norm. We give .onditionsih imply that

soltions off 4 can be dedomp)sed into a stable part and an unstable part.

These conditions are of frequency domain type. -T do not need the usual

assumption that the sinulr o vnisheso (k results can be used to
decompose the semigroup genterat-ed by W into a stable part and an unstable

part.
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°I
SIGNIFICANCE AND EXPLANATION

An ordinary time independent differential equation can be written as an
equation where the derivative x (t) of an Rn-valued function x at time
t is a given function of x(t). If one allows x'(t) to depend also on
earlier values x(s), -m O s < t, of x, then one gets a functional
differential equation of retarded type. An even more general equation is
obtained if one lets x'(t) furthermore depend on earlier values
x'(s), --00 s < t of the derivative x'. Such an equation is called a
functional differential equation of neutral type.

A frequently used technique in the analysis of nonlinear differential and
functional differential equations is the principle of linearization. This
means that one replaces the original equation by a linear equation; one then
obtains qualitative information about solutions of this linear equation, and
finally one tries to show that the nonlinear equation behaves approximately in
the same way as the linear equation. Typical results obtained in this way are
stability theorems, bifurcation theorems, and theorems on stable and unstable
manifolds. For this approach to succeed it is of crucial importance that one
should obtain a fairly detailed knowledge about solutions of linear
equation. Such problems arise in a variety of applications.

In this paper we study a linear system of functional differential
equations of neutral type and with infinite delay. This equation can be
written in the form

d
(M} d (x(t) + D(xt) + f(t)) - E(xt) + g(t) (t 0)

subject to the "initial" condition x(t) - f(t) (t 1 0). Here f and g are
given vector valued input functions, D(xt) is a continuous linear functional
of x(s), -" < s < t and E(xtj is a continuous linear functional of
x(s}, - < s 4 t. We show that under suitable assumptions motivated by
applications, the fundamental solution of (M) can be split into three
components: one which is exponentially stable, one which is either
identically zero or exponentially unstable, and one which is either zero or
gives rise to autonomous oscillations. This is exactly the type of
information that one needs for attacki-" associated nonlinear problems.
Some earlier results of the same natut. iat, but they apply only to a
retarded equation (which one gets by t.tk.,,. T)(xt) 0 in (M), or to neutral
equations with finite rather than infinite delay. T

Do1

The responsibility for the wording and views expresseW1.irthis deedr pive
summary lies with NRC, and not with the author of this report. .
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ON A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION

IN A FADING MEMORY SPACE

Olof Staffans

1. Introduction

A linear, autonomous, neutral system of functional differential equations can be

written in different ways, depending on which type of solutions one is looking for. In the

classical case the delay is finite, one wants the solutions to be continuous, and therefore

one chooses the initial functions and the perturbation terms to be continuous. In this

case one can write the equation in the form

d(1,1) (IJx(t) + f(t)) = Vtx(t) + g(t) (t ) 0),

with initial condition

(1.2) x~t (t) (t 4 0)•

Here f, g and # are continuous, Cn-valued functions, and P and v are matrix-valued

measures supported on a finite interval [0,r]. It turns out that the same formulation can

be used in the case of an infinite delay, provided the measures P and v, this time

supported on [0,1. belong to a suitable weighted measure space, and +, f and 9 are

continuous and belong to an appropriate fading memory space.

In a recent paper [31 John A. Burns, Terry L. Herdman and Harlan W. Stech have studied

the same equation in the case when the solutions belong locally to LP instead of being

continuous. In this case (1.1), (1.2) is not a well posed problem. One needs one extra

piece of information to make the solution unique, i.e. one replaces (1.1) by a pair of

equations

(1.3) P*x(t) + f(t) - y(t) (t • 0)

(1.4) y'(t) - V*x(t) + g(t) (t > 0)

and adds the extra initial condition

(1.51 y(0) - yo

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



A pair of functions x, y is called a solution of (1.2) - (1.5), if y is locally

absolutely continuous on 10,0) with y(O) - yo, if y' and x belong locally to LP,

and (1.3) - (1.5) hold as. (see (2.11) below for a definition of the convolutions). The

only difference compared to (1.1), (1.2), is that this time Uax(t) + f(t) is wall defined

only almost everywhere, so we have to give the value y(O) explicitly, instead of

calculating it from (1.3). Again, the theory in (31 applies only to the case when the

delay is finite, but as we shall see below, it can be extended to the case of an infinite

delay.

Daniel Henry (221 has studied (1.1), (1.2) with finite delay and continuous solutions,

and obtained exponential growth estimates for the solutions. Let D(z) be the

characteristic function of the kernel in (1.1), iae.

DZ_ A A
D(z) - zV(T) - V(T)

where I(T) and (T) are the Laplace transforms of 11 and v. If dot D(W) V 0 on a

line Re z = ), then there is some hope of splitting the solutions of (1.1), (1.2) into

two solutions, one which grows faster than exp(At), and one which grows slower than

exp(At) as t * .More specifically, one wants to get a decomposition x = x8 + xU ,

where x8 is a "stable" solution of (1.1) (but does not necessarily satisfy the initial

condition (1.2)), and xU is an 'unstable" solution of the homogeneous equation

.6) (x(t)) = V*x(t) ( < < t <

Observe in particular that we want xU to satisfy (1.6) also for negative values of t.

Indeed, Henry [221 succeeds to get such a decomposition, if infRe z - Aidet D(z)j > 0, U

has no singular part, and f = g - 0 (Henry also studies the nonhomogeneous equation, and

a nonlinear equation). As far as we know, the question of what happens when P has a

nonzero singular part has been open. Similar decomposition theorems have been proved by

Toshiki Naito (411, (421 for the retarded equation (which one gets by replacing P*x by

x) with infinite delay in an LP-setting, and for even more general "phase spaces". This

time the "stable" solution x., y. satisfies (1.3), (1.4), and the "unstable" solution

XU, YU satisfies

-2-



(1.7) U*x(t) - y(t) ( C C t <

(1.8) y'(t) - V*x(t) ( < C t <

Observe that if (1.1), (1.3) and (1.4) are homogeneous, i.e. f = g - 0, then both the

stable and the unstable component satisfy the original equation, except for the initial

conditions.

Here we develop a decomposition theory which applies to neutral (as well as retarded)

equations with (finite or) infinite delay in a continuous and a LP 
setting. We do not have

to assume that the singular part of v vanishes, although the result that we get permits a

stronger decomposition when it does vanish. On the other hand, our setting is less general

than e.g. the abstract phase space discussed in (20].

2. On Some Fading Mmory Spaces Compatible with a

Weighted Measure Space

There exists an extensive theory on spaces of fading memory types see e.g. 14] - (9],

(15], (20], (271, [34], (37], [41] and [42] ([37] contains a fairly complete discussion of

the theory prior to 1977). It is a common feature in fading memory spaces that the norm of

the translation operator T
h' defined by

(2.1) rhf(t) - *(t+h) (t,h e R)

plays a crucial role when one investigates asymptotic properties. The norm of the

translation operator is a submultiplicative function, and we get a connection to the theory

of weighted measures in e.g. (13], (30] by choosing the weight of [13], (30] to be

essentially the norm of the translation operator. Actually, below we use this idea, but

formally we proceed in a slightly different way. We first define the concept of a

"dominating function" 0(h), and then introduce some fading memory spaces, in which the

norm of the translation operator is dominated by P(-h).

We call P a dominating function on 9, if P Is strictly positive, continuous, and

satisfies

(2.2) P(st) C P(s)P(t) (s,t @ R) (0) - 1

-3-
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The condition (2.2) is the same as the condition (2.1) in (301, plus the additional

P(0) - 1. We call n an influence function dominated by P, if n is continuous,

strictly positive, and satisfies

(2.3) n(s+t) 4 P(a)t) (st e R)i n(0) 1 .

Observe that (2.3) implies (replace t by s+t and a by -a)

(2.4) (m()1(t) 4 n((+t) (s,t e R)

where ; is the function

(2.5) ;(t) - (P(-t)) "1  (t e R)

Moreover, it is easy to see that both P and ; are influence functions dominated by P,

and that every influence function n dominated by P satisfies

(2.6) ;(t) < n(t) 4 P(t) (t e n) .

We warn the reader that our definition of an influence function is not quite the standard

one. In general one defines the functions n and P only on R - (-0,01 or on

+
R - [0,") instead of R. We could do so also here, i.e., follow [41 and work with one

dominating function on R+ 
and another on R-, but the present approach simplifies the

basic theory considerably.

We let M(PtC) be the set of all complex, locally finite masures on R such that

(2.7) lul - fR P(t)dIjl(t) < -

Here UIi is the total variation (measure) of P. Let C
n

'
n 

be the set of

nXn-dimensional complex matrices, and let N(PCn x n ) be the matrix-valued analogue of

M(PC) (this time one uses a matrix norm when one computes the total variation 1l of

U).

In the sequel we shall define function spaces with values in either C, Cn or C n x n .

Most of the time it is irrelevant in which space the values of the functions lie, and

therefore we do not specify this space explicitly. In the @am way, it is often irrelevant

in which space the values of our measures lie, and we abbreviate both (PC) and

M(P;C 
n xn ) 

by N(P).

For every influence function n dominated by P, we let SC0 ( ) be the set of

continuous functions * on R satisfying

-4-



urn n1(t)*(t) - 0

with norm

(2.8) If1 = sup n(t)lI(t) •

teR

We show below that these spaces are contained in the space BUC(fl) or "uniformly

continuous" functions, defined as follows. A continuous function * on R belongs to

BUC(n) if the norm in (2.8) is finite, and if it is uniformly continuous in the sense

that

lie ITh* - = 0

h0 h

where Th to the translation operator defined in (2.1). By (2.6),

BC 0(P) C BC 0 (11) C BC 0 (p), and BUC(P) C SUC(n) C BUC().

We let L(n), 1 I p < 0, be the set of measurable functions on R satisfying

Ilp< ft, where

(2.9) 1#lp d R (TI(t)l(t)IPdt) 
1
/P

The space L (n) is defined analogously, with

(2.10) I, - ese sup n(t)I(t) •

teR

Observe that BUC(n) C L(n), and that for 0 e BUC(n), one may write If1 - I1 (cf.

(2.8)). Moreover LP(P) C LP(TI) C LP(P), 1 4 p 4 (.

One can define, at least formally, the convolution l* of a measure u e M(P) and a

function f e LP(r), 1 4 p 4 m, by

(2.11) P*t) - fR dl(s)f(t-s)

If P - {ij } is matrix-valued, and f - {4 ) is vector-valued, then U*f in (2.11)

should be interpreted as the vector-valued function whose jth oomponent is I k Vjkek,

with analogous definitions when U is complex-valued and is vector-valued, etc.

Lema 2.1. For every P e M(P), the convolution operator + P Ih' maps LP(n),

1 4 p ( -, BUC(n) and BC0(1) into themselves, and

(2.12) I*#Ip 4 IMI I lp

-5-
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Actually, the proof given below shows that P* aleo maps the subspaces

( BUC(M) I (t)f(t) + 0 (t + 
-)) and (# e c(n) I n(t)#(t) 0 (t .)) of

SUC(TI) into themselves.

Proof. The function a W *(t-s) is measurable with respect to P for almost all t 6 R

(24, Theorem 13.9 and Lensa 20.7], so the convolution in (2.11) is well defined, provided

we can show that

lI I * l~l(t) = }'R l*(t-s)IlIlI(s)

is finite a.e. However, by (2.3), with t replaced by t - a, and (2.11)

(2.13) n(t)lV*fl(t) 4 n(tOlUl*t1l(t) 4 (PIUI) * (olfl)(t),

so (2.12) follows from e.g. (24, Theorem 20.12], and (2.11) converges almost everywhere.

If * e L ( ) is continuous, then (2.11) converges everywhere, and we may replace the norm

in (2.12) by the norm defined in (2.8).

If e e BUC(n), then ITh (P*) - U*fl - I*(Th - f)) • I1 ITh# - #1 * 0 (h + 0),

so ij*# e BUC(n).

In Lemma 2.2 below we prove that BC (Y) C BUC(fl). This, combined with the previous
0

paragraph, shows that P*# is continuous whenever f e Bc0(). Let # 6 BUC(O) satisfy

'(t)#(t) + 0 (t + )* Then by (2.11) and (2.13),

1(t) l,*(t)I • ( f + f )n(t-sell(t-9)Ils)dljls)

4 f P(s)dl11l(s) sup 'l(s)l(ls)I
(-A,t/21 s~t/2

+ f P(s)dIM1(s) sup ri(s) l(s) + 0 (t +
(t/2 , ) s<t/2

The same computation shows that '1(t)1*f(t) 
+ 

0 (t + - ) whenever q(t)#(t) 
• 0

(t + -), so * e BC (TI) whenever f e BC STI).
0

0

Lemma 2.2. The translation operator Th  is bounded in LP(n), 1 4 p < ", with

(2.14) ITh fl P(-h) fllp

it is strongly continuous in BC0 (n), in BUC(n) and in LP(n) for 1 C p < . In

particular, BC0 (T) C BUtC() .

-6-



Lemma 2.2 is essentially contained in (4, Remark 3.23.

Proof. That the translation operator is strongly continuous in BUC(I) is built into the

definition of BUC(T). That (2.14) holds follows from (2.12) and the fact that

T h - h* where 8-h is the unit point mass at -h. If * is continuous and has

compact support, then T h + uniformly, and in LP(n) for I 4 p 4 . The set of

continuous functions with compact support is dense in BC () and in LP(M) for

1 4 p < , and this together with the fact that the translation operator is bounded

implies the strong continuity in RC0 ( ) and LP(n), 1 C p <
0

Lemma 2.3. Let a e LP(P), and 4 e LI(M), where I C p 4 -, and 1/p + l/q- I.

Then a* S BUC(n), and

(2.15) Ia01 < lal 1,1p q

If I < p < , then af e BCo(l).

Proof. That (2.15) holds and that nt)a**(t) + 0 (t + *M) when 1 < p < follows from

(2.13) and H5lder's inequality (see e.g. [24, p. 295]). The uniform continuity is dee to

the fact that translation is continuous in LP(O) for 1 4 p < -, and in Lq(n) for

ICq < -

We say that an influence function n has the relaxation property, if

(2.16) n(t) = 0(0(t)) (t + -a)

Obviously, the function 0 itself never has the relaxation property, and by (2.6), a

necessary and sufficient condition for the existence of an influence function dominated by

0 with the relaxation property is that 0 has the relaxation property. hgain, we warn

the reader that our definition of the relaxation property is related to the relaxation

property in e.g. [4), but not identical to it. They become approximately identical if

P(t) 3 1 for t C 0 (cf. Lemmas 2.4 and 2.6 below).

Lemma 2.4. Let n be an influence function with the relaxation property, and let

e BCo(n), 6 6 LP(n), 1 C p < -. Then ITt#* - o(P(-t)) and ITt* p - o(P(-t)) as

t °

-7-



Proof. We only prove the statement concerning 4, the proof for 4' being completely

analogous.

Pix E > 0. Choose T so large that

(2.17) sup f(t)I4(t)WMI ' e
It P T

Define

(2.18) B = sup P(t)l4lt) ,
-T~ct<T

and choose S so large that

(2.19) (tmn-t) C C/o (t) S)•

Use (2.3), (2.4) and (2.17) - (2.19) to get for t ) S,

-(t)r 4 t) sup 1(s)I4(s+t)I

( P(t) sup T(s)I*(s+t)I + 3(t) sup n(s)l4(s+t)lIs+tl>T 1s+tl<CT

C sUp n(s+t)I*(s+t)l + p(t)T(-t) sup 0(s+t)l0(s+t)l
la+tI)T Is+tlCT

C £ + P(t)Tl(-t)O 4 26

This shows that 0(t)IT t* + 0 (t +
tO

The spaces BC0 () and LP(M) are defined in such a way that 0 BC0 (n) iff

SBC, where BC0  is the set of continuous functions vanishing at ti, and

e LP(f) iff no e Lp , where LP is the standard, non-weighted LP-space. A similar

result is true for BUC(n).

Lemma 2.5. # S BUC(n) iff no e BUC, where BUC is the set of bounded, uniformly

continuous functions on R.

Proof. Clearly i| < iff no is bounded, so it suffices to show that the two concepts

of uniform continuity agree. We have to show that

lii sup n(t)I*(t+h) - *(t)l = 0
h+0 tSR

--



if f

lim sup ln(t+h)#(t+h) - n(t)#(t)I = 0

h O tOR

But

n(t+h)O(t+h) - n(t)f(t) - n(t)(*(t+h) - * t))

- (n(t+h) - n(t))O(t+h)

so this is equivalent to

lim sup fn(t+h) - r(t)l 10(t+h)l - 0
h+0 tOR

By (2.3), (2.4), the continuity of P and P at zero, and the fact that

P(a) = 0(0) - 1,

lhm sup If(t+h)-n(t)I = 0
h+0 teR n(t+h)

This means that

lim sup tn(t+h) - n(t)t I1(t+h)I
h+O tOR

Ifl(t+h)-fl(t)I a
4 I*! lim sup Tn(t+h) 0

h+O tSR

0

khen we discuss (1,1), (1.2) and (1.2) - (1.5) in a semigroup setting, we shall work

In one of the spaces SUC(r), BC0(f() or LP(n), I ( p < -, but restrict our functions to

R-. We denote the restricted spaces BUC(R in), BC0 (R-;n) and LP(R-;n). One gets norms
+

for these spaces by restricting t in (2.8), (2.9) to R-. The spaces BUC(R ;+),

BC (R*1r) and LP(R+i) are defined analogously.

We define the combined translation and restriction operator At  by

(2.20) At (s() - (s e R

Observe that At - AOTt, and that At maps BUCln) into BUC(R sri), BC 0(1) into

BC (R i), and LPl) into LP(R'in).

-9-
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When one studies a nonlinear neutral functional differential equation (e.g. with

finite delay) it is often of crucial importance to know that the trajectories of bounded

solutions are relatively compact. We shall not discuss the nonlinear equation in this

paper, but we want to record the following compactness result for future use.

Le-mma 2.6. Let P be a dminating function eatisfylng p(t) I (t e R-), and let n be

an influence function dminated by P, with the relaxation property. Let V be a set of

continuous functions 0 on R satisfying A * BC 0(R-;) for t e R+ . Then the set

{At 01 e v, t e R+) is relatively compact in 9C C (R ) iff for every T > 0, the set

V is uniformly bounded and equicontinuous on (-T, ), and

(2.21) lim sup n(t)I*(t)I - 0 .
t+-m eV

One could prove Lemma 2.6 by essentially repeating the argument used by Yoshiyuki Rino

in the proof of his corresponding compactness lemma [27, Lasma 4). However, we prefer to

give a slightly different proof.

Proof. That (2.21) is a necessary condition for relative compactness follows from the fact

that the set (A 0 e V) is totally bounded, and each f e V satisfies

lim n(t)f(t) - 0. On each interval [-T,0], n is bounded away from zero, so relative

compactness in BC0(R 1I) implies relative compactness in BCt-T,01, the set of bounded

continuous functions on I-T,O], with the maximum-norm. Thus, if {t f1# e v, t e R} is

relatively compact in BC 0(R-rI), then by the converse of Aacoli's theorem, the set

{*(s+t) 1 e v, t e R+ } is uniformly bounded and equicontinuous for -T ( s ( 0. But this

implies that V is uniformly bounded and equicontinuou on each interval (-T,1 , as

claimed.

Conversely, suppose that for each T > 0, V restricted to E-T,11 is uniformly

bounded and equicontinuous, and that (2.21) holds. We claim that this implies

(2.22) him sup n(s)If(s+t)I - 0

tSR

Define

(2.23) h(t) - sup n(t)I*(t)l

-10-



Then h(t) * 0 (t -), and

(2.24) sup h(t) N < •

teR

put

(2.25) g(t) - 7(t) SUP h(s)

t e47

Then g(t) ) h(t) (t e R). Observe that by (2.3) and our assumptions on P,

n(t) 4 P(t-s)(s) 4 n(s) for t 4 a, so n is nondecreasing. This fact together with

(2.24) and (2.25) yields g(t) 4 N (t e R). M claim that g(t) * 0 (t + -). Fix

C £ 0, and choose T so small that h(t) (4 (t (T). Then for t 4 T,

h(e)
g(t) < n(t) sup h + .

Thus, as n(t) 
+ 
0 (t -m), we have i(t) 4 2E for t sufficiently small, so indeed,

g(t) 0 (t + -1)

By (2.23), every 4 e V satisfies

0(e) l 4 h(s)/n(s) 4 g(s)/n(e) (s e R)

It follows from (2.25) that g/n is nonincreasing, and so also

IT #(s)1 - I(Cs+t)I 4 g(s+t)/n(e+t)
+

4 g(s)/n(s) (t e R , a e R)

Thus,

sup f(S)I#(C+t)l 4 g(s) + 0 (a +

4eV+
teR

This proves (2.22).

As SC oR in) is a Sanach space, it suffices to prove that (At. 4 ev, t e i+) is

relatively sequentially compact. Take sequences k e V and t k e R + . 
By Ascoli's

theorem, we can find subsequences (which we again denote by *k and tk ) and a continuous

function 4 such that T tf k + 0 uniformly on compact subsets of R. Fix £ 0 O. Then,

because of (2.22), we can find a number T 4 0 such that

sup 7(s)ITt k*(s)l c , sup n(s)l(s)I e •
skT sT

-11-



On I-T,0] we have uniform convergence, so for k big enough

sup n(s)j? * (5) -k (sI ( £

TKs8O tk

This shows that & tk * Ak 0 in BC0(R71n}, and completes the proof of Lemma 2.6.

3. On Laelace Transforms and Derivatives

We recall from [30J that to every dominating function one may adjoin two real numbers

* *

P. and 0, < 0, P ( , as follows

0, = - log (t) = -im log 0(t)

t>0 t t
+
W t

(3.1)

P* -splog t (t) _- i log t (t)0 "--sup "-lim

tICO

Moreover,

(3.2) M(P) C M(exp(-At)) for every ), P. C X K P

The bilateral Laplace transform of a measure u if defined by

(3.3) A(t e du(t) (P 4 Re z 4 P*)(3.3} J(z) = fR

Equivalently, define ez(t) - exp(zt), observe that ez e BUC(iC), and define

A
(3.4) V(z) = 1*e z(0) (O. < Re a 4 P

Let q, r e M(P). Then the mapping * q*(r*#)(0) is continuous form Ti(c O(P)
nxnJ

into C (or Cn or C 
nx n

), and by the Riesz representation theorem, it is induced by a

measure s e m(p), i.e. we can find a measure s e M(P) such that

8 9 0 ) q * ( r • f } ( 0 ) .•

We define the convolution q*r of q and r to be this measure a. Then by definition

(q'r)*(0) - q*(r*)(0) ,

and as translation commutes with convolution, we get

(3.5) (q'r)'# = q*(r*#)

-12-
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Once one knows that (3.5) holds for 4 e BC 0(P), one can show that it must also hold

for 4 S BUC(f), and for 4 e LP(n), 1 4 p 4 - (in an almost everywhere sense), where n

is an arbitrary influence function dominated by P. If 4 e LP(n), I 4 p < f, then we can

find *e S C (P) rlLP(C) such that 14-41 is arbitrarily small. As (3.5) holds for *,

and the Convolution operator is continuous in L(n), we get (3.5) for every * e LP(n).

If 4 e '(n), then we can find ; such that ; is Borel measurable, that 14-;1 - 0,

and sup n(t);(t) <. If e e BUC(f) then take 4 = 4. lb can then find a Borel
teR

measurable sequence n e L (n) (or *n e BC 0(P) in the continuous case) such that

f(t) k(t) is uniformly bounded, and * nt) *(t) pointwise. By Lebesque's dominated

convergence theorem,

(q * r) ; 4(t) = lim (q'r) n t)
n+n

- 1im q ( Cr n )(t) - g (r *
__

(the second equality holds a.e. in the L -case, and everywhere in the continuous case.

Thus, if + e BUC(n), then (3.5) holds everywhere, and if # e L(n), then (3.5) holds

almost everywhere.

If one applies (3.5) with 0(t) - exp(zt) and uses (3.4), then one gets

(q r)(z) - r()(z

In particular, the notion of convolution defined here is equivalent to the notion used in

[13] and [30).

The following lemma characterizes those measures in M(O) whose (distribution)

derivative also belongs to M().

Lemma 3.1. Suppose that p, q 6 M(P), and that for some A R, P0  • 
A p

(3.6) zA(z) - A(z) (Re z s A)

Then p is induced by a function a, i.e. dp(s) - a(s)ds, which is locally of bounded

variation, and whose measure derivative do equals q. In particular, da e M(p).
Conversely, suppose that a 6 LIp), and da e M(P). Then

(3.7) za(z) = (da}(z) C0, Re z 0

-13-
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Proof. Define dp,(t) - exp(--Xt)dp(t). Then p, is a hounded measure, in particular, it

is a tempered distribution, whose (distribution) Fourier transform .(iu) equals

{A+iw) (La e R). The Fourier transform of the distribution derivative px of

equals i4~i4]w) (w e R), so the transform of Ap, + pi equals (O+itO)P(+iW)

(W 8 R). On the other hand, this is also the transform of q,, defined by

dq1 (t) = exp(-Xt)dq(t). Thus, XPA + pj - %. In particular, pj - qX - AP is a finite

measure, hence p. is induced by a function "A of bounded variation. This means that

p is induced by a function a which is locally of bounded variation, and

A exp(-Xt)a(t)dt + d(exp(-t)a(t)) = exp(-X)dq(t) .

But d(exp(-lt)a(t)) - -X exp(-Xt)a(t)dt + exp(-At)d(t), so we get dat) - dq(t).

The converse statement is proved in a similar way. One gets (3.7) in the distribution

sense on all lines of the form Re z - X, P, ( X ( p , even without the assumption

A
da e M(p). As da C M(P), we know that (da)(z) is a continuous function, and this

makes (3.7) hold in the classical sense.

0

Lemma 3.2. Let U e M(P), and let a e LI (P) with da e 14(). Then Ua is locally of

bounded variation, and d(U*a) - I*da e M(P).
*

Proof. Fix any X, P, 4 1 < . By Lemma 3.1, on the line Re z - X,
z(U*a z V a ^ a ^A )z(U~) () -zi(z)a(z) = U(z) (ass) C)((z)

-(,*da)(z)

Thus, by Lemma 3.1, P*s is locally of bounded variation, and d(u*a) - Muda.

The following lemma plays a crucial role in our study of the differentiability

properties of functions in BUC(M) and LP(M), I ( p <.

Lemma 3.3. Define h (t) - 1/h (-h ( t ( 0) if h > 0, 5h(t) = -1/h (0 ( t 4 -h) if

h 0 0, and WhCt) - 0 otherwise. If e S LP(n), 1 ( p < 0, then ft * in
- h - h

LP(n) as h 0. The same statement is true with LP(n) replaced by BUC(n), and by

SC Vl ().

-14-



The LP version of Lemma 3.3 is essentially contained in [37, Lemma 2.4, p. 73). As

h * 0. once can regard 8 h as an approximation of the unit point mass 8 at zero. The

proof of 1-mma 3.3 given below could easily be extended to other "approximate identities"

than h .

Proof. First consider the case # e BUC(n). Wb have to show that

fl(t) 1-.1 fo (t-u)ds - (l
h -h

tends to zero as h 0 0, uniformly in t. write this expression as

I(t) lIt (4(.) - *(t))dl

< ~ I.. I1t~h 1#. - *(t)IdsI

As #8 BUC("I), Ir h -h 1 * 0 (h * 0), which means that for every c > 0, we can find

Y > 0 such that for all S, t e R with Is-ti 4 Y,

n(t) Wes) - fHt) l 4 C ,

Clearly, this implies that 16 h* - I ( E for 0 < IhI < Y, and we have proved that

h* 1* f in SUC(O) whenever * e BeiC(). If # e sC0 (T), then by lemma 2.1 and 2.2.

h $ e BC 0(n), and by the preceding argument, 8h*f * in BC0(T).

Next consider the case f e LP(n), I 4 p < 0. If 0 is continuous and has compact

support, then 8h + # uniformly, and also in LP(n) as h * 0. The set of functions

of this type is dense in LP(n), so 8 * + * for every f e Lp (n).

As a corollary we have the following lemma.

Lemma 3.4. If * is locally absolutely continuous with *' e LP(n), 1 4 p < -, then

T - e LP(n), and h 1 (Th* - *) *' in LP(n), as h 0. Then the same statement

is true with LP(n) replaced by BUC(n), and by DC0 (,.

This follows directly from Lemma 3.3, because h'(th* -h ) - **'.

-15-
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We let WI '(01, I p ( , be the set of locally absolutely continuous functions

w LP() satisfying ' LP(n). Similarly, let BUC IM) (and C I (n) consist of

those continuously differentiable functions # e BUC(M} (or # e nC0(n)) such that

*1 e BuC(Ti) (or 01 e cO(n)}.

Lemma 3.5. Let u e N(0), and * e w1 'P (I), 1 p < I. Then P*# e w1'P(in)o and

h- (Th(U-*#) - 0-*) - P* ' in LP(n) as h - 0. In particular, (jj*) - 0
*1. The samehI

statements are true with Wi'PM replaced by 1UC (I) andby B CI(1T) Ind Lp(V)

replaced by BUC(n) and by BC 0(0).

This follows again directly from Lemma 3.3, combined with Lemma 2.1.

Lemma 3.6. Let a e L (0) with da N(0), and let # e LP(n), 1 4 p <-. Then

a*# e w1 'P(T), and h
1
'(Th (a*) - a0) * do*# in LP(V) as h * 0. In particular,

(a * )' - da * . The same statements are true with WI'P(q) relplaced by DUC (11), and

by BCo(rI), and LP(O) replaced by SUC(M) and by DCO(11).

Proof. Clearly it suffices to show that h- (h(a) - a*#) + da* in 3(1 whenever

# e B(), where B(M1 is one of the spaces LP(n), I C p < 0, BTC(V1) or BC0 (q1). By

Lemma 3.3, 6 h * (da*#) + da*# in B(M) as h * 0. However, b * (da*#) = (6h*da) *,

and 6 h*da is almost everywhere defined by the function

6h'da(t) - h- (a(t+h} - a(t))

Thus,

6h * (a*) - h- ((t ha * - a*#)

Sh'(Th (a*) - a**) ,

so h I(Th(a*#) - a*) * da* in 3(1), as desired.

Lem" 3.7. w1'p 0) C C 0(M for 1 4 p < , and W C SUC(Ml.

Proof. Take # e wl'P(n), 1 4 p 4 , and use (2.3) to get

-16-



Urh -1 - supteR n(t)l#(t+h) - 4(t)l

4 sUPraR T(t) If+h,,(s)lde
tG (tla ~

' sup f-l-l)(Sup Ift~h nl(s)I*(s) dsI)
t@ tR

ts-tI(IhI

( sup P(v))(sup Ift+h n(s)I*'(,s)jd-)
IvI'lhI ten

The first factor sup P(v) is bounded as h + 0, and the second factor
I'lhI

sup f l t (sc(s)Id-I
ter

tend@ to zero as h + 0, because ')#' belongs to the standard, non-weighted LP-space

over R. This proves that eS BUC(nl).

Now suppose that p < . Then by lmma 2.5 and the preceding result, Yi4 is

uniformly continuous and belongs to LP (without weights), so n(t)#(t) * 0 as t

Remark 3.8. Lesmas 2.2 and 3.3 - 3.6 are also true when p - , i.e. with LP(n)

replaced by L(n), and w
1
'P(n) replaced by w

1
l(n), provided one throughout replaces

the strong convergence with eakc-oonvergence. This follows from the fact that these

lemmas are true in Ll(n), where

(3.8) ;(t) - (n(-t))
"1  

(t e R)

and that L (n) can be identified with the dual of L (n) through the dkality mapping

Observe that ; is an influence function dominated by P iff n is so.

4. A Modified Problem

00 shall now turn to our study of (1.1), (1.2) or (1.2) - (1.5) in a fading memory

space. Let , be a dominating function or R
+
, ie. a positive, continuous function on

R
+  

satisfying

-17-
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+(4.1) 1P(B+t) 4 P(s)P(t) (a, t S R ), P(0) - 1

In addition, assume that

(4.2) P, - f log P(t) Jim log PMt ' -

t>O t t+ t

(cf. [30, 121), and suppose that

(4.3) 0('~W~) is noridecreasing

When (4.1) - (4.33 hold#, o* nv-, .,~ P to a dominating function on R, as defined in

Section 2, by putting

(4.4) A.;- -= xp(-P~t) (t < 0)

and in the sequel we tkkr-"ruW . Jume that (4.4) holds (although other extensions are

pc-diblej cf. 131). we denoted tbu subset of M(P) than vanishes on (- ,0) by

4( R + P).

In the sequel we shall not deal with (1.1), (1.23 or (1.2J - (1.53 directly, but

rather with modified versions of these equations. The LP case, i.e. the modificationa of

(1.2) - (1.5) is slightly simpler, so we treat this case first. in (1.23 - (1.53, let

,A, j e M(R PCnxn), f. g e LP(Ru n;iCn), and * 9 L9 (Rsfln;Cn3, where I < p 4 -, and n~

is an influence function dominated by P. Redefine x and define y for t (0, and

*for t > 0 by

(4.S) y~t) -0 (t 11

~(1+t~y 0(-1 < t 4 03

(4.73)(t 0 (t > 0)

Define

y(t) (t 4 0)

(4.8 f 1M P(t) + f(t) (t > 0)

(4.93 1(t) {.V4(:3 (t ' 03)
( 4 . 9 9 1 V~ f t ) * g ( t ) ( t > 0 )

-19-



Then f, fit g1 e LP(R11gC), with f, and gl depending linearly and continuously on

*, f, g and y0 , and (1.2) - (1.5) are transformed into

(4.10) P*x(t) + fM(t) - y(t) (t 6 R)

(4.11) y'(t = V*x(t) + g1 (t) (t e R)

with initial conditions (4.5), (4.6) (of course, (4.10) and (4.11) hold only almost

everywhere). The fact that (4.10), (4.11) are equations on R rather than on R
+
, and

that all functions vanish for t 4 -1, make (4.10) and (4.11) easier to analyse than

(1.2) - (1.5).

In the continuous case we use essentially the same transformation, but modify the

functions close to zero in order to make all functions continuous. This time take U, v

as above, f, g e BUC(R +;n, Cn), and # e BUC(R- il C n). Define y by (1.3) to transform

(1.1) into (1.3), (1.4). Redefine x and define y for t < 0 by

0 (t '-1) ,
(4.12) xt(4.2)(M +t)M() (-I < t 4 0),

(4.13) y(t0
Of(lt)2(at + 0) (-1 < t 4 0) ,

where a and 0 are chosen so that y(0) - P*#(0) + f(0) and y'(0) v*(0) + g(0),

i.e. 8 M 9i*(0) + f(0) and a - v*f(0) + g(0) - 28. Define

4((t) - x(t) (t € 0)4(14) i(t) (
0 (Ct > 0),

y(t) - M'x(t) (t 4 0)
(4.15) [lt

f(t) + pi*(t) (t > 0)

SYOMt - Vex(t) (t 4 0),

(4.16) q1t M g(t) + v*(t) (t > 0)

-19-
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Then *, f1o g, e BUC(RnCn), with f, and g, depending linearly and continuously on

*, f and g, and (1.1), (1.2) are again transformed into (4.10), (4.11), but this time

with the initial conditions (4.12), (4.13). If f, g e BC0(R ,q; Cn), then

f1, q, e BC0 (Ri
n ;cn).

We call P atomic at zero, if

(4.17) det P({01) $ 0

i.e. U has an invertible point mass at the origin. We assume throuSgout below that

(4.17) holds, as one usually does when one studies a neutral equation (if (4.17) is

violated, then the equation may become advanced rather than neutral). Thanks to the fact

that our initial data vanish for t 4 -1, one can apply existence and uniqueness results

for the case of a finite delay, to show that (4.10), (4.11) with initial conditions (4.5),

(4.6) or (4.12), (4.13) has a unique solution on R (see [3] for the LP-case and e.g. [is,

p. 2751 for the continuous case). However, in general (4.10), (4.11) also has solutions

which do not satisfy the initial conditions, and these will play an important role in the

sequel. We shall solve (4.10), (4.111 by using "resolvents" or "fundamental solutions".

The resolvent which vanishes for t < 0 will give the solution of (4.10). (4.11) which

satisfies the right initial condition, and the other resolvents will be 'Ised in our

decomposition of solutions into stable and unstable components.

5. On the Resolvents

If one applies the Laplace transform to (4.10), (4.11), and solves for X, y, then

one gets, at least formally,

(5.1) (z) = D- (z)(^I(z) - zf1 (z))

A A -1 ZA () A(Z)-1(5.2) y(z) UWD z) - V(z)- (z)f1 (z)

where

A A
(5.3) D(z) - zI(z) - V(z)

Still proceeding formally, suppose that r Is a function, locally of bounded variation,

such that

-20-
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A

(5.4) r(z) - D (z)

Then the solution of (4.10), (4.11) should be given by

(5.5) x - r*g1 - dr*f 1

(5.6) y - Uireg1 - V*r*f 1

In the sequel we make this formal argument precise.

We follow R. L. Wheeler (45] and G. S. Jordan and R. L. Vneeler (31), and define the

determinant measure det P of 1i by computing the formal determinant of 1A, but

replacing all pointwise multiplications by convolutions. More precisely, if P - (Ij ),

then

det P - i: sign(T)MIT( * j2t(2)**" PnT(n)
TeS

n

where Sn is the group of permutations of {1,...,n). As P e M(PCn
x
n) is supported

on R+' we have det 11 6 M(PC), and det )i is supported on R
+
. Split det 0 into its

discrete, singular and absolutely continuous part

dot U - (dot P) + (det P) + (det 0A)
d a a

just in the same way as in 131]. Finally, define

(5.7) - (A > P0 linfl(det V)d(x + iW)I > I(det )j) a}
R

where

(5.8) I(det P)A = I exp(-At)dl(det )8 1(t)

Below we work most of the time in measure spaces different from our original measure

space M(P). Define

(5.9) nt) - e (t 6 R)

e
" t  

(t • R-)

0 -
a t  

(t 0 R+)

-21-
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Then n. is a dominating function, and so is T1'a if a 4 B. Define K4X and M to

be the measure spaces K, = M(Fl0, and M,' M(n 0a). Observe that %a - %a , MB,

and that M(R 1P) C , for all a,0 satisfying P, ( e ( B. Let L and L! be theHaloB

corresponding spaces of Integrahle functions, contained in M. and M B As in (5.8), we
denote norms in M, and L, by I I), and norms in M,, and L1  by

u,B uz l,B .

In the sequel we throughout let 6 stand for either the scalar-valued or the matrix-

nxnvalued unit point mass at zero. We use I to denote the identity matrix in C

In our first theorem we construct solutions rA to (5.4).

Theorem 5.1. Let A C fl, and assume that det D(z) 0 0 on the line Re z = A. Then
I

there exists a unique rX e Lj with dr) e m3 such that

(5.11) dr, * V - r,*V - U*dr, - v*r = 6

Moreover, r. e L , nd dre e M,,+, for some 9 > 0. If A = PC, and

(5.12) inf I(det U) d (P. + iW)l > fo P(t)da(det 1|.)(t)
WeR

1

then r, e L (P) and dr, e M(P).

The proof given below is adapted from [311.

Proof. To get uniqueness it suffices to observe that (5.11) and Lemma 3.1 imply

r,(zP(z- r)(z)v(z) - I (Re z X A)

hence

A -(5.13) r X W D- (z) (Re z - A)1

and that a function in L) is uniquely determined by its Laplace transform on the line

Re z - A.

Suppose that we can find C > 0, a function r, e L such that (5.13) holds, and

a measure s, e m,,+, such that

(5.14) s (z) - zD (z) (Re z - A)

Then, by Lemma 3.1, r, is locally of bounded variation, and dr) - 5a . Define

tA dr,* -r,*v

Then, for Re z = A,

-22-
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A (Z) A (Z)
t(z) - zrAlz)Ulz) - rX(z)V(z)

- 1 . A
= D (z)(z1(z) - V(z)) - I

so t , i.e. drr*U - r,*v = 5. In the same way one shows that U*drA - V-rA - 5, so

r is the solution of our problem.

It remains to find C > 0, r) e LA,+ and sa e M satisfying (5.13) and

(5.14). As A C Q, we have

inm (det 1U) (A + iw)I > ,(det P) I
aeR d

and so by the uniform continuity of (det U)d(z) in Re z ) A, we can find £ > 0 such

that

(5.15) inf I(det U) (z)I > l(det S
X4Re z4X+E d a

In particular,

lir inf Idet P(z)l > 0
Iz!"

A(Re z4X+

and as (det D(z))/z - det U(z) P 0 (IzI + m, X 4 Re z 4 X+e), we must have

lim inf Idet D(z)I > 0
IzI.HS

A.Re zCA+t

In the strip A < Re z < X-f det D(z) is analytic, so it can have only finitely many

zeros there. By decreasing the value of ' if necessary, we may assume that

(5.16) det O(z) 0 0 (A 4 Re z 4 A+C)

It follows from (13, Satz 7] and (5.15) that (det U) d + (det U) has an inverse q

in NAA+C' i.e. there exists a measure q e MAA+E such that
(5.17) ((dat U) d(z) + (dat M) (z)]A(z) = I

for A C Re z 4 )+c. Fix an arbitrary a ( X, and define e(t) - exp(Ut) (t 1 0),

1 A(Z . ( k-1.
e(t) - 0 (t < 0). Then a e L XA4, and e(z) - (z-n) * Write (5.13) in the form

A - X A .*% A -1
rX(z) - D (z) = e(z)[1(z) + elzplal(z) - V(z))]

- [(z)g)(z) ad( (z)-V(z))]
A A .A

q(z) dot 1 (z)+e(z)(mU(2)-Vls))]

-23-
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whee a f[(z) + '%(z) (z)

where adjt ) ( (z) - v(z))] is the adjoint of the matrix

1(z) + a(z)(aij(z) - V(z)). This matrix is the transform of a measure in MAA+., namely

the matrix-valued measure one gets by taking the formal adjoint of 1A + e*(aj-v),

replacing multiplications by convolutions. Thus, if we can invert the denumerator in

(5.18), then (5.18) defines a measure in M

Observe that det[ll + e*(CI-V)] has the same discrete and singular parts as dot P

(because e*(aP-v) is absolutely continuous). This, together with (5.17), implies that

A q (Z e 1 Z Z a(Z AAPdet[(z) + 1(z)(i(z) - "(z))] - I + q(z)h(z)

where h is the absolutely continuous part of dot[Il + e*(011-V)] Moreover,

A A A A
1 + q(z)h(z) - (dot D(z))q(z)e(z) - N for A ( Re z < A+c. Apply e.g. (30, Theorem 2.31

to get a function d L such that

[1 + A(z)(z)1 -1 + A(z) (X •Re Z 4 XC).

This means that (5.18) becomes

A A A(5.19 A(z) A A A A(5.19) rA(z) = e(z)q(z)(1+d(z)) adjIu(z) + e(z)(IP(z) - V(z))]

This is a sum of products of transforms of measures in M ,A+C, multiplied by thiu

transform ,(z) of ae Thus, 15.19) defines r as an eleoent n0 !..l

To get a solution sA M ,A+E of (5.14) we multiply (5.19) by z, ast 3aberve that

AA
ze(z) - 1 + (z) (X < Re z < X).

Thus,

A A A A A A
sX(z) - (1 + Mai + d(z )adj((z) e(z)(QU(X) - v(z)]

and this defines aX as an element of M

Uesentially the same argument gives the special claim rX * L1 (0) and dr1 S N(P)

when A - P0, and (5.12) holds.

0

Recall that II is atomic at zero, if dot ij((0) 0 0.

Theorem 5.2. Let P be atomic at zero. Then there exists a constant d P p. such that

[d,l) C 0, and dot D(z) 0 0 for Re z ) d. Moreover, rd vanishes for t < 0. and

r- r d for every A • d, where rA and rd are the resolvents constructed in Theorem

5.1.
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Proof The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1. The main

difference is that we, this time, work in the space N of measures Mdf vanishing on

(- ,0), and that we invert the determinant of V + e*(aU-v) in (5.18) in an elementary

way, using a norm estimate, instead of (13, Satz 7].

Fix an arbitrary a < p*, define e(t) - exp(*t) (t • 0), e(t) - 0 (t < 0), and

write (5.13) in the form

(Z)- [() EA(z) + e(z)(a(z) - V(z))

(5.20)A A A A
A(,) ad[_(z)Ve()(a(z)-V~z))]

A A A A
det[ P(z)+e(z) (ap (z)-V(Z))1

If we choose d ) P,, then eL1, v 0 M+, and if we can find an inverse to

det(N + e*(a - v)) in d then (5.20) defines a solution rd of (5.11) in M + As
d d

+C K+ C NA for every A ) d, the uniqueness of the solution of (5.11) in mA yields

rA rd for A•d. Thus it only remains to find d ) p such that Id,i) C a,

det D(z) 0 0 for Re z > d, and such that det(U + e*(0 - V) has an inverse in Md -

As )I is atomic at zero, and Ii + e*(aU - v) has the same discrete part as V, the

measure det(M + ee(aU - v)) has a point mass at the origin of size det U({0) 0 0.

Define a - det V({01), and put q - ad - det(P + e*(Mp - V)). By Lebesque's dominated

convergence theorem,

l f exp(-Xt)dlql(t) ' 0 (A )

so we can find a constant d A P, such that lql d < lal. As Iq/al < 1, the measure

a5 - q - det( + e*(ai - v)) has a (convolution) inverse in N + which one gets by simply
-1s

expanding (ad - q) into a (convolution) power series. Thus, there exists a measure

p 0 M+ (i.e. p - (ad - q) 1 ) such that p * det(P + e*(a - v)) = 6, and so (5.20)d

defines a solution rd e md of (5.11). The Laplace transform of rd converges absolutely

for Re z A d, so necessarily det D(z) 9 0 (Re z d d). That Cd, ) C A follows from

the fact that for X d,
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tn JI(det )(X + iW)I - *(det p)sI
WeR

lel - f(o,-) exp(-At)(dl(det )d 1(t) + dI(det 1)aI(t))

j Ial - Iql A >al - Iql d > 0

0

6. Decomposing the Solutions

By applying Theorems 5.1 and 5.2, we get solutions to (4.10), (4.11) of the form

(5.5), (5.6).

In Section 5 we worked with the dominating runctions Tx and 
TI 

B,' defined in

(5.9), (5.10). The number X in Theorem 5.1 determines the growth rate of the solution of

(4.10), (4.11) that we obtain by using the resolvent r,. Below we will have to replace

our original fading memory spaces by the spaces that one gets by choosing the influence

function to be either n. or q,
0 . Observe that j =C9 X If a < 0, the n, is

no longer a dominating function, but it is still an influence function dominated by no,,.

Also note that my (2.5), (2.6) and (4.4), n(t) 0 nIA(t) (t ) 0, 1 P.

When we say below that a solution x, y of (4.10), (4.11) belongs to "the appropriate

fading memory space with influence function n,", we mean that if fl, g1 I BUC(), then

x, y e BUC(n.), if fl, gl e BC0(f(), then x, y e Bc 0(nA), and if fl, gl e LP(n),

1 p 4 -, then x, y e LP(n).

1
Lemma 6.1. Let rA e L., with dr e M be a selution of (5.11), and define

(6.1) x, = r,*g 1 - dr,*f,

(6.2) yA - U*r,*g I - v*r,*f1

Then x, y. belong to the appropriate fading mmory space with influence function n.,

and x., y, is a solution of (4.10), (4.11).

Actually, the solution x, y. in Lemma 6.1 is unique, i.e. no other solution x, y

of (4.10), (4.11) belongs to the appropriate fading memory space with influence function

TI. However, we do not rely on this fact below, and we leave the uniqueness proof to the

reader.
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Proof. That x,, y, belong to the right space follows from Lame 2.1. Use (5.11), (6.1),

(6.2) and Lemmas 3.5 and 3.6 to get

P*x, + f, = P*r,*gl + (6 - U*dr,})f1 = y

V*xA + g, = (6 + V*rX)*g I - V'dr,*f1 -

- u*dr,*g1 - v*dr,*f - . .

This means that x., y. satisfy (4.10), (4.11).

0

Lemma 6.2. In addition to the assumption of Lemma 6.1, suppose that r vanishes on

(-r,O). Then x, Y. satisfy x,(t) - x(t), y,(t) - y(t) (t ( 0), where x and y

are given by either (4.5), (4.6) or (4.12), (4.13).

Proof. By (4.15), (4.16) (or (4.8), (4.91), (5.11), (6.1), Lemmas 3.5 and 3.6, and the

fact that rA vanishes for t < 0, we have on the interval (-,01,

X - r,*g 1 - drx*f 1

- rx*(y' - vex) - drx*(y - tj*xl

- r,*y' - dr,*y + (dr,*'j - r,*V)*x = x

so x (t) - x(t) for t 4 0 (almost everywhere in the LP-case). By (4.10), for t C 0,

¥x - P=xx + fl " *x + fl = y, so also yX(t) - y(t) for t 4 0.

0

Lemms 6.3. Let r and r0  be as in Laema 6.1, with ac 0. Then

x0,0 0 - and yQO - yo y. belong to the appropriate fading memory space with

influence function na,B' and xa,, Ya,, is a solution of the homogeneous ewmatione

(1.7), (1.8).

This is a direct consequence of Lamma 6.1 and the fact that ai - min{11 a }o

TAmm 6.4. Let [a,01 C At with det D(z) pf 0 on the lines Re z 01 and Re z -.

Then det D(z) has at moot finitely many zeros z, I ( j ( m, of finite ordet kj Ln

the strip a < Re z < 0. MoreoMr, x C1 and y,, in Lema 6.3 are of the fourm
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m pJ~t)ez~
(6.3) xaB(t) - ,

i-I

a z t
(6.4) 1 t)- I q teJ.1

where pj and gj are polynomials of degree at most kj - 1. In particular, if

dot D(z) 10 0 in the strip a C Re z 4 0, then x= .a5G = 0.

The proofs of (6.3) and (6.4) are completely similar, so we prove only (6.3) below.

Proof. Recall that the resolvents rA in Theorem 5.1 satisfy r e L6 I and

drAe NmL+c for some C > 0. In particular, r e L1  and drAem for every

1. + . By the uniqueness of the solution rX in LA , rX =rA I for

A 4C1 A+C. The interval [a,01 is compact, so if det D(z) gi 0 for a 4 Re z C 5,

then we must have rA ra - r, for every A e [a,B]. In particular,

x -(r - ra)*g, -(dr, - dr,,)*d I - 0, and we have proved the last statement of Lea

6.4.

That det D(z) can have at most finitely many zeros of finite order in a strip

A 4 Re z 4 A+£ was established in the proof of Theorem 5.1 (the lines following (5.15)).

By the compactness of the interval [a,B], the same is true in the whole strip

a C Re z 5.

To get (6.3) in the general case we go back to the proof of Theorem 5.1. Fix A,

a < A 8. Analogously to (5.15), we can find AI and A 2  with a < X1 < A < A2

such that

inf J(det U) d(z1 > tldet U)s8 1
XA4Re zAd1

1 2

Then the solution q of (5.17) satisfies q e 
M
A1 ,A2 .  If necessary, modify the values of

A and A slightly to ensure that

1 2

(6.5) det D(z) $ 0 (Re z - -, j - 1,2)

Recall that ft, ql e LA (since A1 
> 
P,). By (5.13) and (6.1), on the lines

Re z = A (J - 1,2),

(6.61 X W D - D (zlf W
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The same argument as in Section 5 shows that the right hand side of (6.6) is a vector of

(extended) locally analytic functions on the maximal ideal space {z 6 C IX1 < Re Z < 1 2

of L 1 with a finite number of poles at the zeros Zj of dot D(z) that lie in the
1A' 2F

strip X1 ( Re z A 2 (see [30, Definitions 3.2 and 7.1]). The pole at zj is of order

at most kj. Apply [30, Theorem 3.61 to the components of this vector to get a function

a e L (Cn ) and constants , (1 1 k 4 ) such that

XIA2A 
-1j A

(6.7) x (a) - X I 2 ,j(z-z 1 )- + a(z)

for Re z - A (j = 1,2). Take the inverse transform of (6.7) for j = 1 and j - 2 to

get for almost all t,

a~t) (t <0)

(6.7) X l(t) t1-1 a t

X1<Re <A 2  lj (1-1)1

and 1-1 t

s~)- A1(e j 1  BI~ - - * (t ( 0),

(6.8) <R t <
2 = a(t) (t ) 0)

Subtract (6.7) from (6.8) to get

t1-1 Sjt

( M - x (t)(tSR)
2 1 A1 <Re z ( l 2  -1

The final conclusin now follows in the same way as in the case when det D(z) has no zeros

in the strip 0 < Re z ( B.

0

We are finally ready to state and prove our main result. We give two formulations,

one for the continuous case, and one for the LP-case.
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Theorem 6.5. Let [Q,8] 0, and assume that det D(z) # 0 on the lines Re z - a and

Re z - 0. Then the continuous solutions x of (1.1), (1.2) can be written as a unique sum

= S + x +x where xS  is a solution of (1.1), xC  and xU  are solutions of

(1.61, xS and XU satisfy

(6.9) Ix st)1 O(exp(mt)) (t )

O(exp((O+C)t)) (t + -)(6.10) Ix x(ti - (
U M O(Oxp(dt) (t

(where d is the constant in Theorem 5.2, and £ > 0), and xc  is an exponential

polynomial

6.111 Xclt) - pi(t)e

Here Zj (1 4 J 4m) are the zeros of det D(z) in the.strip a < Re z < B, and pj .re

polynomials of degree at most one less than the order of the zero z . In gerticular if

det D(z) # 0 for M 4 Re z ( 8, then XC 0 0. If 8 ) d, then xU - 0. .f a - P, and

(5.12) holds, then

(6.12) x. e8 C()

and if moreover * e BC 0 (R in), f, g e BC0 (R ;O), then xs e BC0 (n)-

Theorem 6.6. Let (a,61 C 0, and assume that det D(z) p 0 on the lines Re z - a and

Re z - 0. Then the LP-solution (1 ( p 4 ) of (1.2) - (1.5) can be written as a unique

su , - XS + XC + XU, Y - + YC + YU' where xs, YS is a solution of (1.31, (1.4),

xc, YC and xu, Yu are solutions of (1.7), (1.8), and the 2g.gponents satisfy the

following conditions. Let d he the constant of Theorem 5.2, let £ e iven as in

Theorem 5.1, with A " 8, and define

n(t) (t 0O1

(6.13) n S
exp(-at| (t > 0)
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( exp(-(B+e)t) (t 0)(6.14) n.(Ct) -
(614 nexp(-dt) (t > 0) .

Then Xs, YS e LP( )t and xT, YU e LP(n ). The central components xC Mnd YC Mr_

exponent Ia 1 nolynomials

a ajt
(6.15) x j p(t)e ,

m .~
(6.16) y t) - q (t) e j ,

where zj 0(19 jI () are the zeros of det D(z) in the strip 0 < Re z < B, and pj,

qj are the polynomials of deqree at most one less than the order of the zero z. in.

particular, if det D(Z) # 0 for Q 4 Re z I 0, then xc - Yc 0. If 0 A d, then

xU . YU - 0. If Q - P, and (5.12) holds, then x., YS e LP(n).

Clearly, one gets Theorem 6.5 from Theorem 6.6 by substituting throughout SUC or

SC0  for LP . The proofs of the two theorems are completely similar, so we give a combined

proof.

Proof. Define

(6.17) KS a+ X xC -Bx. - xa , xU - xd - xB

(6.18) YS Y a' YC , YoB - Ya' YU " yd - YO

where the functions on the right hand side are defined as in temma 6.1, with the resolvents

constructed in Theorem 5.1 and 5.2. Then x - xS + xc + xU - xd + *, and

y - yS + yC yU " yd' so by Lemas 6.1 and 6.2, and by the construction in Section 4, x,

y is the solution of (1.2) - (1.5) (or (1.2 - (1.41 in the continuous case). That the

components satisfy the right equations and have the right growth rates follows from (6.171,

(6.18), Lesm 2.1, Theorem 5.1 and Lemnas 6.1 and 6.3. Lem 6.4 tells us that xc, yC

are of the given form. Finally, if B ) d, then by (6.1), (6.2), (6.17), (6.18) and

Theorem 5.2, xu = Yu 0.
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That the decomposition in Theorem 6.5 and 6.6 is unique follows from the tact that the

different components have different exponential growth rate. Let x x S + x~ C U

y - y 4 C+y be another decomposition, and define x. - x 9 - x SYSy y 8 - YS etc.

Then x-x 9 + x + +s yc is solution of (1.2) 0 (.5), with

*-f - g - y -0, so by the uniqueness of the solution of (1.2) 0 (.5), x - y - 0.

Thus, xU - -(xS + xC), yiU - -(yS + y4C), and by using the growth estimates that we have on
I j

the different components, one can show that e ~ L 0 . where ni, is the function

defined in (5.9), with X., + C/2, and E in the constant in (6.14). As DxaD YU is a

solution of (1.7), (1.8), we must have

D(a)(xU) (z) - 0 (Re z All

But det D(z) # 0 on the line Re z - A (because r1  in Theorem 5.1 belongs to
II

L 0', ) so necessarily (IU (:)-0 (Re:a- A,) ie. a 0.B(17,ls

Y-0.This means that x. - -xS, yC -YS, adby comparing the growth rates of the left

and right hand sides we find that xC -C - 0. Clearly then, also xS - y - 0, and the

decomposition is unique.

Remark 6.7. If the initial data belong to W1'P(f), I IC p IC -, then by Leaos 3.5 and

3.6, and the way in which we constructed and decomposed the solutions, x and its

components belong to W"P and y and its components belong to W2'1', with the

appropriate influence functions. Here W 2,pi) consists of functions y such that y,

y' and y" all belong to LP(TI). When p - ,this tells us that Lipschitz continuity

Is preserved.

7. A Semigroup Interpretation

Our decomposition theorems can be interpreted in a semigroup setting. For simplicity

we discuss only the homogeneous equation

dt

with initial condition

(7.2) x(t) W () (t 6 RI1
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in the continuous case, and the corresponding homogeneous equations

(7.3) P~x~ti - y(t) ct e R + 1

(7.4) y'(t) - v'x~t) ct e R+

with initial condition (7.2) and

(7.5) Y(0) -=

in the iP-case. The semigroup generated by (7.1), (7.2) is somewhat different from the

semigroup generated by (7.2) - (7.5), so we discuss the two case separately.

First consider the continuous case. Let x be the solution of (7.11, (7.2), let A t

be the combined translation and restriction operator defined in (2.20), and define

operator TMt for t 0 e by

(7.6) t) x
t

Then T~t) maps BUC(R nl,Cn) into itself, and it has the semigroup property i

T(s+t) - TWsT(t) (a, t S lk) By the definition of BUCC~l), the translation operator

T t is strongly continuous in BUC(T1, and this implies that T(t) is strongly

continuous in BUCCA in1). Thus, T(t) becomes a strongly continuous semigroup.

We claim that the domain D(A) of the generator A of T(tl is the set

(7.7) D(A) e {* e DU R _T)IjPC$(0) V= (~

and that

(7.8) A-' (4 CD(A))

Here #'(t) is the ordinary derivative of #(t) for t < 0, and #'(0) is the left-

derivative of # at zero.

By the definition of the generator of a sefigroup [25. p. 3021,

(7.9) Al - lim h- (Ahx - ) im h- I hec - Ax)

with D(A) consisting of those # e Duc(AR-n) for which this limit exists In DUC(R all).

In particular, (7.9) implies that x has a continuous right-derivative x(+ for t 4 0.

hence x(t) - 4(t) has a continuous derivative #1(t) -xMM(t for t 4 0 (where

I'M) stands for a left-derivative), and that A# - ' BTJC(R g)).
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Conversely, suppose that * e BUC(R-;n) has a derivative ' BUC(R in), and that

x has a right-derivative x(+I(O) at zero, with x(+'(O) - 0-(0) (where 4'(0) again is

t)e left-derivative of * at zero). Then x has a right-derivative x
(+ ) 

e BUC(R';n),

and by the half-line version of Lemma 3.4, the limit in (7.9) exists and equals *'. In

particular, * e D(A). This shows that (7.8) holds, and that D(A) consists of exactly

those * e BUC(RlrI) satisfying *' e BUC(RiT1) for which #'(0) - x(+)(0). To get (7.7)

one must identify the condition 0'(0) - x(+)(0) with the condition U*#'(0) - V*#(0). We

leave this step to the reader, as it is essentially the same argument as in the case of

finite delay (cf. [18, Thi. 10.1, p. 3071).

With the aid of Theorem 6.5 one can decompose BUC(R';luC
n
) into three invariant

subepaces, BUC(R-;T;Cn) - S S C 0 U, where S is a "stable" subspace, C is a "central"

subepace, and U is an "unstable" subspace.

Theorem 7.1. Let Ix,S] C fl, and assume that det D(z) V 0 on the lines Re z - a and

Re z = 0. Then BUC(R-7TI;C n ) can be decomposed in a unique way into subepaces S. C and

U, with the following properties. The subspaces C and U are contained in

BC0 (R-,1,Cn). et Ts(t), Tc(t) and Tu(t) be the restrictions of T(t) to S, C

and U. Then Tc(t) and Tu(t) can be extended to groups on C and U, and TS(t)

and TU(t) satisfy

(7.10) IT s(t)I - O(exp(at)) (t +

rO(exp((8+E)t)) (t +(7.11) ITu(t)lI ~xp(+))
U O(exp(dt) (t + ) ,

where d is the constant in Theorem 5.2, and C > 0. The subspace C is finite

dimensional, and it is spanned by functions * of the form

m zjt

(7.12) *(t) - M pj(t)e (t 4 0)

where zi (1 4 ( m) are the zeros of dot D(Z) in the strip a < Re z , and pj

are polynomials of degree at most one less than the order of the zero z,. In particular.

if det D(z) ' 0 for a C Re z 4 8, then C - (0). If 8 ) d, then u - (01. Pinally,
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a- P,, f e BC0 (R-l'1Cn), and n has the relaxation property, then

(7.13) Ts(t)* - o(exp(P.t)) (t + )

For a version of Theorem 7.1 with finite delay (and with the singular part of P

identically zero), see [22, Theorem 4.1 and 4.2]. The dimension of C is actually equal

to the sum of the orders of the zeros of det D(z) in a < Re z < B see [361.

Proof. We shall use Theorem 6.5 to define projections PS' PC and PU of BUC(R 'n)

onto S, C and U. For every f 6 BUC(R-in), let x be the solution of (7.11, (7.2),

split it into xS + xC + xu as in Theorem 6.5, and define PS *- A0xS , PC
C  -a0Xc, and

P U* A xU* The functions fI and g, defined in (4.15) - (4.16) are continuous, linear

functions of , and the functions A0xS , A0 xC  and Ax U  depend linearly and

continuously on f, and g1. This means that PS, PC and PU are continuous, linear

operators. They are projection operators, because xS, XC and xU all satisfy (7.1), and

the decomposition in Theorem 6.5 is unique. For the same reason they commute with T(t)

for t ) 0. By (7.2), Ps + PC + PU is the identity operator. Thus, defining S, C

and U to be the ranges of P S PC and Put we find that S, C and U are closed,

invariant subspaces of BUC(R'in) with BUC(R in) - S 0 C 0 U. As xC and xU satisfy

(1.6), we can define Tc(t) and TU(t) also for negative t, and Tc(t) and TU(t)

become groups. That TS and TU  satisfy the growth properties (7.10), (7.11) and (7.13)

(if necessary, redefine n so that n(t) = exp(-P~t) (t ) 0) to get (7.13)) follows from

(6.17), Lemmas 2.2, 2.4 and 6.1, and Theorem 5.1. That C is spanned by functions * of

the form (7.12) follows from (6.11), and clearly C is finite dimensional. If 0 ) d,

then by Theorem 6.5, U - {01. Finally, the uniqueness of the decomposition in Theorem 7.1

is a consequence of the uniqueness of the decomposition in Theorem 6.5.

0

Now consider the LP-case. Let x, y be a solution of (7.2) - (7.5), and define the

operator Q(t) on Cn x LP(R-;nsC) by

(7.14) Q(t)(Yo,) - (y~tA tx)

Then Q(t) maps Cn x LP(Rg'i;C) into itself, it has the semigroup property Q(s+t) -

Q(s)Q(t) (s, t e R+), and it is strongly continuous if p ( . n the sequel we
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therefore restrict the values of p to 1 4 p ( . One argues aa in [3] to show that the

domain D(B) of the generator B of Q is given by

(7.15) f(y,o) e cn x W 1'P(RuInIC I P*O(O) - y}

and that

(7.16) B(y,*) - (Ve*, *)

Using Theorem 6.6 one can again decompose Cn x LP(RaInIC! into three invariant

subspaces, just as in Theorem 7.1. The result that one gets is very similar to Theorem

7.1, and its proof is almost identical to the proof of Theorem 7.1. Therefore, we leave

the formulation and the proof of Theorem 7.2 to the reader.

8. Some Additional Comments

In Section 4 we started with a dominating function P on R satisfying (4.31,

extended it to R, and let n be an influence function dominated by P. For instance, if

P(t) - (1 + t)Y  (t • 0) for some positive constant Y, then we take P(t) 1 (t 4 0),

and we can choose

(1+ It "  (t < 0}

(8.1)(;(t)
1 (t ), 0)

This influence function tends to zero as t + -" (but not exponentially|, end it has the

relaxation property.

On the other hand, one could also follow the spirit of [41] and 144] and start with a

dominating function P on R', assume that it satisfies a condition similar to (4.3),

extend it to all of R, and choose n - P. Of course, then (4.4) is no longer true, but

that causes only minor modifications in the main theorems (it affects the growth rates of

the stable components in the case when P,). A more serious problem with this approach

is that one cannot obtain growth rates for Ti anywhere close to those in (8.1), because by

(3.1), if a submultiplicative function tends to zero at infinity, then it does so with

exponential rate.
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We have assumed throughout that P is atomic at zero. This assumption is used

essentially only to assure forward existence and uniqueness for the solutions of (1.1),

(1.2) or (1.2) - (1.5). Even without it the technique used here yields forward existence

in the stable and central subspaces, and backward existence in the central and unstable

subspaces. There is an example in [3] of an equation for which one has forward existence

and uniqueness without P being atomic at zero, and our main theorems could be modified to

apply to that equation.

One can sharpen Theorem 5.1 and subsequent results slightly by appearling to [30,

Section 8] rather than to [13, Satz 7]. This permits one to replace W(det u)aI A  in (5.7)

and P(t)dl(det p) 1(t) in (5.12) by the spectral radii

lim *(det ) nI/n

and

lim [fl P(t)dl(dt 1 :n,(t),I/n

ena 0

respectively, where (det 1 )n stands for the n-fold convolution of (det P) with5 5

itself. For more details, see [30, Section 8].
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